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ABSTRACT

Hybrid microgrids containing renewable energy sources represent a promising option for organizations
wishing to reduce costs while increasing energy security and islanding time. A prime example of such an
organization is the U.S. military, which often operates in isolated areas and whose reliance on a fragile
commercial electric grid is seen as a security risk. However, incorporating renewable sources into a microgrid
is difficult due to their typically intermittent and unpredictable nature. We use simulation techniques to
investigate the performance of a hypothetical hybrid microgrid containing both wind turbines and fossil
fuel based power sources. Our simulation model produces realistic weather forecast scenarios, which we
use to exercise our optimization model and predict optimal grid performance. We perform a sensitivity
analysis and find that for day-ahead planning, longer planning horizons are superior to shorter planning
horizons, but this improvement diminishes as the length of the planning horizon increases.

1 INTRODUCTION

Significant increases in energy requirements due to the exponential growth of the world’s population
(Demirbas 2007) and depletion of fossil fuel resources have led to an increased interest in both energy
savings and adoption of renewable energy sources (RESs) (Gadelovits et al. 2014). While both approaches
address the issue of energy scarcity, RESs are favored as a means of reducing dependency on fossil fuels
(Li et al. 2009). Today, RESs supply around 14% of the total world energy demand (Panwar et al. 2011,
Goldemberg et al. 2000) and this proportion is expected to increase to 30-80% by 2100 (Panwar et al.
2011, Manzano-Agugliaro et al. 2013).

Among the various types of RESs, wind power is one of the fastest-growing technologies with a
recent annual growth rate of 34% (Lenzen 2010). In 2012, wind power accounted for about 39% of the
renewable power capacity added globally; solar and hydroelectric power each accounted for approximately
26% (REN21 Steering Committee 2013).

A hybrid microgrid supplies power from power generation devices, often utilizing renewable sources,
and storage systems. A microgrid operator can realize significant fuel savings by maximizing the runtime
efficiency of generators and supplementing this production with renewable power and intelligent drawdowns
from a storage device. In addition to potential cost savings, a microgrid can enhance an organization’s
energy security and islanding time. For this reason, hybrid microgrids containing RESs are an attractive
prospect for the U.S. military, which often operates in isolated areas and relies on a fragile commercial
electric grid. However, the potential benefits of including RESs in a microgrid are often difficult to realize
due to their intermittent nature. One remedy to the intermittence issue invovles the use of an energy storage
device, such as a pumped hydroelectric or compressed air energy storage system. Such a system enables
energy produced during times of abundant renewable energy availability to be stored and utilized at a later
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time. Another option is to connect the microgrid to a commercial grid, thereby providing an alternative
energy source and also allowing any excess production to be sold to the grid.

A key component of a hybrid microgrid is the Energy Management Center (EMC). The EMC acts as
a mediator between a facility’s load side, generation side, and energy storage system, and it can partially
overcome the issue of intermittence by properly planning grid operations. Ideally, an operating plan should
anticipate any fluctuation in the renewable power output and respond accordingly. By forecasting the
future wind speed with reasonable accuracy, one can predict the future wind power production and use
this prediction to plan generator operations, drawdowns from a storage system, and purchases from a
commercial grid.

This paper uses simulation techniques to investigate the performance of optimal day-ahead operating
plans for a hypothetical hybrid microgrid containing wind turbines, dispatchable fuel-based generators, an
energy storage system, and a connection to a commercial grid. To predict grid performance we utilize
an optimization model that takes as input an ensemble weather forecast. An ensemble weather forecast
consists of a finite sample of equally-likely weather scenarios that captures both the predicted outcome
and the uncertainty inherent in this prediction. The optimization model then generates an operating plan
for the microgrid that is designed to perform well in expectation across all of these weather scenarios.
Because such an optimization model must, in practice, be run in an iterative manner in order to incorporate
updated forecast information, we perform a sensitivity analysis to determine the effect of the planning
horizon length on the microgrid’s performance. The historical weather forecast data used in this study
was produced by the Global Ensemble Forecasting System (GEFS) developed by the National Centers for
Environmental Prediction (NCEP) (Hamill et al. 2013).

Optimization models are often tested using simulated data in order to determine their sensitivity to their
inputs. Simulated data provides a means for experimenting with a model to determine which parts of the
optimal solution are sensitive to the inputs, and which parts are robust to incorrect inputs. For our model,
the primary input of interest is a time series of wind forecasts from an 11-member ensemble forecast.
Simulating complex and dependent time series is a challenging problem. Fitting parametric models often
requires large amounts of data and limiting assumptions. We rely on an algorithm that is able to generate
similar time series from just one set of data while maintaining a similar dependence structure to the original
series. This enables sensitivity analysis of the model’s response to the input series by generating simulation
replications of multidimensional time series. The model can then be tested on these time series which have
a similar dependence structure, but are significantly different from the original data.

The rest of the paper is structured as follows: Section 2 reviews the simulation methodology used to
generate wind forecasts. In Section 3 we develop a mathematical model of the hybrid microgrid performance.
Results are provided in Section 4. Section 5 presents concluding remarks.

2 SIMULATION OF WIND FORECASTS

This section describes how we simulated wind forecasts for use in our optimization model. To test our
model’s robustness, we take wind forecasts generated from real weather models and generate simulated
forecasts that are not identical to the real forecasts, but maintain similar patterns and dependence structures.
We want to maintain the dependence within a given forecasts series generated by a model, and across
the different times the forecasts were collected. This means that the simulated forecasts will have similar
qualitative aspects to the real forecasts. If the forecasts on two adjacent days are similar to each other,
the simulated forecasts, while different, will approximately maintain this correlation. The advantage of
this algorithm is that is allows us to perform sensitivity analysis on a single set of real forecasts without
making assumptions or fitting a parametric model to the data.

We have 11 forecast predictions from each day of 2012, each of which predicts the wind speed at an
altitude of 80 meters (the approximate height of a wind turbine) for up to 72 hours into the future. These
real forecasts can be used in the optimization model to determine the energy policy. Our intention is to use
time series simulation methods to generate replicated forecasts that incorporate the statistical properties
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of the real forecasts. Two parameters are key to our algorithm implementation. The parameter λ is the
degree of “correlation” the simulated data has with the real data. A value of λ = 1 means that the simulated
data follows the the real data exactly, λ = 0 means the simulated time series has a random trajectory, and
λ =−1 mean the data goes in the opposite direction of the forecasts (this could lead to negative windspeed
forecasts which would not be relevant in this case). We choose a value of λ = 0.5, so that the simulated
data somewhat follows the trajectory of the real data, but not too closely, as we want to test the model’s
sensitivity to different forecasts.

The parameter σ is the variation associated with individual simulated forecasts. If σ = 0 the algorithm
would return the same simulated forecast for a given value of λ . The perturbations to the forecasts are
normally distributed with variance σ2 to allow for multiple replications to be generated. We choose a
value of σ = 0.5 for our experiments. The values of λ = 0.5 and σ = 0.5 provide forecasts that have
a qualitatively and quantitatively similar structure, while differing enough from the original forecasts to
provide a meaningful test for model robustness. As an example of the types of forecasts that are simulated,
consider the example in Figure 1 that shows a real ensemble of forecasts, along with simulated forecasts.
Note that we do not want the simulated forecasts to be too close to the real forecasts or to be too close to
one another.
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Figure 1: Sample plot of real forecast data, along with simulated forecasts. Each line corresponds to a
particular member of the forecast ensemble. The darkened lines correspond to the mean forecasts across
the ensemble.

We use an algorithm developed in Schruben and Singham (2014) to generate the simulated forecasts.
We briefly describe the algorithm here, and refer the reader to that paper for more details. The algorithm
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works by mapping each dimension of the data (in this case, each day forecasts were collected) into one
dimension of a hypercube. For the 2012 data, this is a 366-dimensional hyperrectangle. There are twenty
five points in the time series at times t = 0,3, . . . ,72 corresponding to the forecast times at each three hour
interval in the future for three days. Let this set of “real” data at a given time t be xt , which is a vector of
length n = 25 representing the forecast length. We wish to generate simulated forecasts yt . The algorithm
is recursive, so we initialize yt as N (xt ,σ

2In) where In is the identity matrix with dimension n.
We define the angle between yt−1 and xt as θθθ t , and the distance between these points as Rt . Next,

we define the angle between xt−1 and xt as θθθ
′
t , and the distance between these points as R′t . Hence,

Rtθθθ t = xt −yt−1 and R′tθθθ
′
t = xt −xt−1. This means that Rtθθθ t is the vector between the simulated data in

the previous time lag and the real data at time t, while R′tθθθ
′
t is the vector between the real data at times

t−1 and t. The algorithm generates the path of the simulated data as a linear combination of the direction
of data following the same direction as the real data (from xt−1 to xt), and the direction of moving towards
the real data (yt−1 to xt).

Lastly, we let εεε t be distributed as N (0n,σ
2In) where 0n is a vector of zeros with length n. We then

simulate windspeed forecasts using the following equation:

yt = yt−1 +λRtθθθ t +(1−λ )R′tθθθ
′
t + εεε t .

The values of yt follow the path of xt with some variation in the hyperrectangle. We note that by
mapping each day’s forecasts into a path in a hyperrectangle, we are able to capture the dependence between
these forecasts. For example, today’s forecast for windspeed two days from now is likely to be correlated
with tomorrow’s forecast for two days from now. Additionally, there is correlation in the windspeed within
a given day’s forecast. Rather than constructing individual models for all the possible dependencies, we
map all the days forecasts into one path that contains these dependencies, and simulate forecasts that follow
the real forecasts. We note that we do not model dependence between the different ensemble members,
and so each ensemble member is simulated separately.

This algorithm was used to simulate arrivals to an emergency department in Schruben and Singham
(2014), for movement of soldiers in a military border crossing scenario in Singham, Thompson, and
Schruben (2011), and is generally applicable to many complex multidimensional time series. Adjustments
to λ and σ can be made on an ad hoc basis.

3 MICROGRID PERFORMANCE MODEL

We evaluate the performance of a hypothetical microgrid using a variation on a discrete-time stochastic
mixed-integer linear optimization model first described by Bouaicha (2013). This model prescribes optimal
operating schedules of fuel-based generators given an ensemble of forecasts for wind power production.
The objective of the model is to minimize the expected monetary cost incurred over the planning horizon,
where the expectation is taken with respect to the members of the forecast ensemble.

3.1 Microgrid Components

We consider a microgrid consisting of a number of fuel-based generators with different operating char-
acteristics, a wind farm, an energy storage device, and a connection to a commercial power grid. The
commercial grid can provide power in case of shortages and can purchase excess power produced by the
microgrid.

An important limitation of fuel-based generators is their inability to rapidly transition from an idle
state to an operational state. After a generator is powered on, it must undergo a “warm-up” period during
which it is running and consuming fuel, but is not connected to the grid. During this time the generator
reaches a safe operating temperature and its power output is stabilized. To account for this limitation,
the optimization model ensures that after being powered on, each generator must run for a prescribed
number of time periods before contributing to the total power output. Thus, it is important to carefully plan
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generator operations in order to minimize excess fuel consumption. For simplicity, we assume a constant
(deterministic) hourly demand and only consider uncertainty introduced by wind power production.

3.2 Optimization Model

We now highlight a few key characteristics of the optimization model we use to evaluate our hypothetical
microgrid. Full details of this model, including a mathematical formulation, are available in Bouaicha
(2013). To account for the uncertainty inherent in planning based on weather forecasts, the model utilizes
an ensemble weather prediction representing a finite sample of the uncountably infinite set of possible
weather outcomes. The model then prescribes an optimal operating schedule for the components of the
microgrid, including:

• when to turn each generator off or on, and at what speed to operate it,
• when to schedule a charge or discharge of the energy storage device, and at what rate,
• when and how much energy to buy from the commercial grid, and
• when and how much energy to sell to the commercial grid.

Decisions regarding generators are constant across all weather forecast scenarios; all other decisions are
allowed to vary by scenario in order to reflect short-term operational decisions that can be made “on the fly.”
Our implementation differs slightly from that in Bouaicha (2013) in that we allow the energy purchased
from or sold to the commercial grid to vary by scenario, whereas Bouaicha ensures that the amount of
energy purchased or sold in each time step is constant across all scenarios.

The model’s objective is to minimize the expected total cost incurred over the planning horizon. Costs
are incurred from fuel consumption during generator warm-up and production periods, usage of the energy
storage device, and purchases from the commercial power grid. Additionally, revenue may be obtained if
excess power is sold to the commercial power grid.

The optimization model’s constraints are designed to model the physical functionality of the microgrid,
as well as various operational limitations. Constraints fall into three main categories reflecting limitations
on power production, generator operations, and energy storage.

3.2.1 Power production and demand satisfaction

The model ensures that during each time step, the total energy produced is at least as great as the total
load. Energy is produced by generators, wind turbines, purchases from the commercial grid, and discharge
of the energy storage device; it is consumed by demand satisfaction, sales to the commercial grid, and
charging of the energy storage device.

3.2.2 Generator operation

As described in Section 3.1, fuel-based generators must undergo a warm-up period following activation
before they can contribute to the power grid. The optimization model ensures that an appropriate warm-up
period is enforced each time a generator is turned on. Additionally, the model enforces minimum and
maximum operating speeds for each generator, and it limits the total number of changes to each generator’s
operating speed over the planning horizon.

3.2.3 Energy storage

The model calculates the total energy stored in the energy storage device at each time step and ensures
that this quantity is nonnegative and no greater than the maximum capacity of the energy storage device.
Additionally, it enforces a minimum and maximum charge rate each time the energy storage device is
charged or discharged.
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3.3 Rolling Horizon Optimization

Weather forecasts are provided for a short time frame, typically 24 to 120 hours, and their accuracy is not
constant over this time frame. In particular, the uncertainty associated with a forecast grows with the lead
time. Figure 3.3 shows an example 96-hour forecast with 11 ensemble members. Note that although the
wind speed predicted by the 11 members is fairly consistent for short lead times, the ensemble members
begin to diverge at a lead time of around 60 hours and are substantially different by 96 hours for this
particular example. Although the exact time at which ensemble members begin to significantly diverge
varies from forecast to forecast, this qualitative behavior is consistent in weather forecasting.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 78 84 90 96
0

2

4

6

8

10

12

14

16

Hours (forecasted)

W
in

d 
S

pe
ed

 (
m

/s
)

Figure 2: Example wind speed predictions from an 11-member ensemble forecast. Note that although the
ensemble members are largely consistent in their predictions for short lead times, they differ substantially
at long lead times.

The difficulty of making accurate weather predictions far in advance necessitates that any planning
model that relies on these predictions be run in an iterative fashion. In rolling horizon optimization
(sometimes called receding horizon optimization), an optimization model is solved over a time horizon
known as the planning horizon. The resulting plan is then executed over a shorter time frame known as the
execution horizon. After the execution horizon has elapsed, the model is solved again over the planning
horizon using updated input data, and the process repeats.

Rolling horizon optimization has a number of advantages. A key advantage in our application is that
rolling horizon optimization does not rely on perfect information about the future, but instead incorporates
improved information as it becomes available. Moreover, even if perfect information is available, rolling
horizon optimization is less computationally costly than optimizing over the full time frame of interest and
is sometimes used for this reason alone.

Two parameters dictate how a sequence of rolling horizon optimization runs proceeds: the length of
the planning horizon and the length of the execution horizon. When planning microgrid operations, it is
advantageous to utilize updated weather forecasts as they become available. Thus, a natural choice for the
execution horizon is time that passes between forecast updates. In this paper we utilize forecasts that are
generated every 24 hours, so our execution horizon is 24 hours. Choosing a planning horizon, however,
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is less straightforward. Long planning horizons are favored in many applications because they reduce the
likelihood that highly suboptimal “myopic” decisions will be executed. However, because the quality of
weather forecasts deteriorates substantially with the lead time, there is reason to believe that a very long
planning horizon may not be ideal for planning microgrid operations. In particular, with a long planning
horizon, one runs the risk of subordinating near-term decisions, which will be executed during periods of
low uncertainty, to account for possibilities expressed in highly uncertain data pertaining to the future. Thus,
we perform a computational study to determine an appropriate planning horizon for planning microgrid
operations based on weather forecast data.

4 RESULTS

We now study the impact of the planning horizon length on the quality of the schedules produced for the
hybrid microgrid described in Section 3. We implement the optimization model in the General Algebraic
Modeling System (GAMS) environment and solve it using CPLEX 12.2.0.2. Using the simulation method
described in Section 2, we generate thirty 72-hour ensemble weather forecasts for each day in a 60-day
period. We then solve our optimization model in a rolling horizon manner using an execution horizon of 24
hours and planning horizons of 24, 27, 30, 33, 36, 48, 60 and 72 hours. We evaluate the performance of the
plans resulting from each planning horizon in terms of actual cost, i.e., the cost that would be incurred if
the microgrid were operated in accordance with the resulting plans and under observed weather conditions.
In the absence of observed wind speeds at an 80-m altitude in the historical database (and thus in our
simulated forecasts), we estimate actual costs using a “most accurate” member of each forecast ensemble.
We designate the ensemble member whose prediction at a 24-hour lead time most closely matches the
ensemble mean in the first time step of the next forecast as the “most accurate” and treat its prediction
as ground truth. Because the initial time step in a weather forecast represents the forecasting model’s
best estimate of the current conditions based on assimilated data from all available observations, this is a
reasonable proxy for observed data.

In addition to comparing the actual costs resulting from various planning horizons, we also compute a
“best-case” plan and its resulting cost for each simulated forecast set. The best-case cost is the lowest total
cost that could be achieved if the wind speed were known in advance with perfect accuracy for the entire
60-day period of interest and the optimization model were run with a 60-day planning horizon. Although
one could not hope to achieve the best-case cost in practice, it provides a benchmark by which to compare
the costs resulting from the various planning horizons.

Figure 3 gives an example of power production (left) and load (right) schedules resulting from a best-case
plan (top) and a plan generated with a 24-hour planning horizon (bottom). In this instance, demand is
constant at 2000 kW, and the purchase and selling prices of energy are also constant. Production costs for the
three generators vary, but are always less than the cost of purchasing from the commercial grid (excluding
the generator’s warm-up period). Note that in the best-case production schedule, Generator 1 is shut down
at around time step 55 due to the large influx in wind power that is upcoming. In the actual production
schedule, Generator 1 continues to run during this time. Conversely, the actual schedule discountinues
usage of Generator 3 around time step 85, resulting in a significant amount of energy purchased from the
grid. The best-case schedule, on the other hand, continues to run Generator 3 during this time period.
Overall, the best-case schedule makes heavier use of the storage device and purchases less energy from
the commercial grid.

To investigate the impact of the planning horizon on the total cost incurred, we examine three different
microgrid configurations. These configurations are summarized in Table 1. Configuration 1 represents a
baseline configuration. In Configuration 2, the purchase and selling prices for the commercial grid are
modified to make the commercial grid a more unattractive option. In Configuration 3, both demand and the
size of the wind farm are doubled in order to reflect a larger installation with a more significant renewable
component. Generator attributes are constant across all configurations: Generator 1 produces energy at a
cost of $0.10 per kWh (after the warm-up period), Generator 2 produces energy at a cost of $0.09 per kWh,
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Figure 3: An example of the optimal power production (left) and load (right) schedules resulting from a
best-case plan (top) and a plan generated with a 24-hour planning horizon (bottom). Power production
sources include three generators, discharge of the storage device, purchases from the commercial grid, and
wind power. Power consumers include demand, charge of the storage device, and sales to the commercial
grid.

and Generator 3 produces energy at a cost of $0.14 per kWh. Each generator has a minimum production
capacity of 490 kW while running, and a maximum production capacity of 640 kW.

Figure 4 summarizes the results of our computational experiments, where the optimization model was
terminated when the objective value was proven to be within 1.5% of the optimal objective value. The left
side of Figure 4 displays cost data. Blue dots represent actual values for the individual simulated scenarios
for each planning horizon, while red dotted lines represent best-case values for each simulated scenario.
Solid lines represent average quantities over the 30 simulated scenarios. Note that although a planning
horizon of 24 hours results in highly suboptimal performance, increasing the planning horizon to 33 hours
yields a large improvement in solution quality for all configurations considered. Increasing the planning
horizon beyond 33 hours does not yield substantial additional benefit for the architectures considered.

The right side of Figure 4 displays data concerning purchases from the commercial grid. Although
purchases from the commercial grid are not explicitly minimized in the optimization model, the costs are
structured so as to make the commercial grid an unattractive option, and thus large purchases from the grid
reflect inefficiencies in the planning process. Similar to the cost results, increasing the planning horizon
results in a decrease in the amount of energy purchased from the commercial grid up to a planning horizon
of 33 hours, at which point the marginal benefit of increasing the planning horizon is negligible.
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Table 1: Microgrid Configurations.

Configuration 1 Configuration 2 Configuration 3
Demand (kW) 1000 1000 2000

Purchase cost ($ per kWh) 0.12 0.18 0.18
Selling price ($ per kWh) 0.08 0.06 0.06

Size of wind farm baseline baseline 2x baseline

A comparison of the results for Configurations 1 and 2 reveals that when the costs pertaining to the
commercial grid are made less attractive, the total cost incurred increases, as would be expected. However,
this effect is substantially more pronounced for a 24-hour planning horizon than for any other planning
horizon. With a sufficiently long planning horizon, the optimal plan avoids making purchases from the
commercial grid and shifts to other means of production; this shift is clearly reflected in the right side of
Figure 4. (Note that the exponent differs on the vertical axes for Configuration 1 and Configuration 2.)

Comparing the results for Configurations 2 and 3, we see that doubling both the demand and the wind
production capacity results in a substantial increase in cost; in fact, the cost incurred more than doubles.
This is due to the fact that although the wind production capacity has doubled, the generator production
capacity remains constant across all configurations. Thus, in Configuration 3 the generators are able to
satisfy a smaller fraction of the residual demand not satisfied by wind power. The only alternative is to
purchase a larger fraction of energy from the commercial grid; note that this quantity approximately triples
from Configuration 2 to Configuration 3.

5 CONCLUSIONS AND FUTURE WORK

This paper has described the use of simulation and optimization methods evaluate a hybrid microgrid
containing both wind turbines and fuel-based generators. After creating realistic weather forecast scenarios
using time series simulation methods, we use a rolling horizon optimization technique to create realistic
grid operation schedules. We perform a sensitivity analysis to determine the impact of the planning horizon
length on solution quality. Our experimental results indicate that although longer planning horizons are
superior to shorter planning horizons, the marginal benefit of increasing the planning horizon decreases
substantially as the planning horizon increases.

Note that we have considered only the uncertainty resulting from imperfect knowledge of future wind
power production. Another important source of uncertainty is the demand, which we have assumed to
be constant. In reality, demand is also uncertain and is often correlated with weather. Future work will
extend our study to incorporate demand uncertainty. Such a study might involve using techniques similar
to those described in this paper to produce demand forecasts, or it may involve a more detailed agent based
simulation model to simulate consumers in the network.

Future work will also investigate the impact of energy storage capacity on microgrid robustness and
efficiency and may provide operators with real-time guidance and control policies for microgrid operation.
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Figure 4: Actual and best-case costs (left) and energy purchases from the commercial grid (right) for
various planning horizons. Blue dots represent actual values for individual simulated scenarios, while
red dotted lines represent best-case values. Solid lines represent average quantities over the 30 simulated
scenarios. All optimization runs were terminated when the objective value was proven to be within 1.5%
of the optimal objective value.
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